
Django uWSGI taskmanager
Release 1.0.2

G. Giaccari, G. Lucci, G. Celata, P. Melchiorre

Jan 15, 2023

CONTENTS

1 Get started 3
1.1 The demo tutorial . 3

2 How-to guides 9
2.1 How to manage tasks in the django admin site . 9
2.2 How to install django-uwsgi-taskmanager in an existing project . 17
2.3 How to add django-uwsgi-taskmanager to a dockerized stack . 18
2.4 How to enable notifications . 19
2.5 How to contribute to the project . 21
2.6 How to debug tasks . 21

3 Reference 23
3.1 taskmanager.models . 23
3.2 taskmanager.management.base . 23
3.3 taskmanager.logging . 24
3.4 taskmanager.tasks . 24

4 Discussions 25
4.1 Pre-requisites . 25

Python Module Index 27

Index 29

i

ii

Django uWSGI taskmanager, Release 1.0.2

uWSGI taskmanager is a Django application that can be used to launch management tasks asynchronously, via the
standard Django admin interface, using uWSGI spooler.

The rationale for this app is to let people having access to the django admin interface, launch or schedule management
tasks, without having to consult the developers or operations teams.

The features include:

• start and stop tasks via the django admin interface

• schedule tasks for future executions

• program periodic tasks launch

• check, filter and download the generated log messages, watching how created live

• simply write a standard Django Command class (your app doesn’t need to interact with Django uWSGI Taskman-
ager)

• get notifications via Slack, email or build a custom notification class

An animated GIF of how it all works. Click to enlarge.

CONTENTS 1

https://uwsgi-docs.readthedocs.io/en/latest/Spooler.html?highlight=spooler

Django uWSGI taskmanager, Release 1.0.2

2 CONTENTS

CHAPTER

ONE

GET STARTED

Following the demo tutorial, it will be possible to install, configure and use django-uwsgi-taskmanager for a simple
demo django project and have an idea of its basic workings.

Further knowledge can be found in the How-to guides.

1.1 The demo tutorial

Clone the project from github onto your hard disk:

git clone https://github.com/openpolis/django-uwsgi-taskmanager
cd django-uwsgi-taskmanager

There is a basic Django project under the demo directory, with a uwsgi.ini file and four directories (media, spooler,
static, venv).

demo/
demo/

__init__.py
settings.py
urls.py
wsgi.py

manage.py
media/
spooler/
static/
uwsgi.ini
venv/

Modify the content of uwsgi.ini, if needed, for example by changing the port, if already in use, and adding the
number of processes.

Following is the content of my file, while writing this tutorial:

[uwsgi]
chdir = %d
env = DJANGO_SETTINGS_MODULE=demo.settings
http-socket = :8000
master = true
module = demo.wsgi
plugin = python3

(continues on next page)

3

Django uWSGI taskmanager, Release 1.0.2

(continued from previous page)

pythonpath = %d
processes = 2
spooler-processes = 1
spooler = %dspooler
static-map = /static/=%dstatic
virtualenv = %dvenv

Note: Remember not to use this configuration in production, as it lets uWSGI handle all http connections, even for
static content. Usually a frontend server, and/or CDN connections are used along the uWSGI app server.

1.1.1 Installation

Enter the demo directory, then create and activate the virtual environments:

$ cd demo
$ mkdir -p venv
$ python3 -m venv venv
$ source venv/bin/activate

Install Django uWSGI taskmanager:

(venv) $ pip install django-uwsgi-taskmanager

Install uWSGI (if you use the uWSGI binary from your OS, you can skip this step):

(venv) $ pip install uwsgi

Collect all static files:

(venv) $ python manage.py collectstatic

Create all the tables:

(venv) $ python manage.py migrate

Collect all commands1:

(venv) $ python manage.py collectcommands --excludecore

Create a super user to login to the admin interface:

(venv) $ python manage.py createsuperuser

Start the project with uWSGI:

(venv) $ uwsgi --ini uwsgi.ini

1 excludecore ensures that core django tasks are not fetched.

4 Chapter 1. Get started

Django uWSGI taskmanager, Release 1.0.2

1.1.2 Usage

Visit http://127.0.0.1:8000/admin/2 and login with the credentials set in the createsuperuser task.

Add and launch a task

Proceed as indicated in the video, to create a test task and launch it.

Please note that the video refers to an older release and the UI interface may have changes slightly. The sense of the
operations still are perfectly valid.

Follow task execution in the lov-viewer window

From version 2.2.0, after the task has been launched, the link to log messages brings to the log-viewer windows,
where log messages can be seen, updating in almost-real-time, and filtered or searched.

The following video shows a sample, using the test_livelogging_command task that generates info, debug, warn-
ings and errors messages.

Scheduling

To schedule a task and have it starts at a given time, use the Scheduling fields:

2 use the port specified in uwsgi.ini (defaults to 8000).

1.1. The demo tutorial 5

http://127.0.0.1:8000/admin/

Django uWSGI taskmanager, Release 1.0.2

Periodicity

To have a task run repeatedly, set both the sheduling fields to a date in the future and the Repetition rate and Repetition
period fields to the desired quantities.

Note: Please observe the following events in order to verify that the tasks are executed (refresh the page):

• the Last datetime and Next read only fields change in time

• new reports are generated and shown in the Reposts section (only the last five are kept)

• the uwsgi task logs in the console show the scheduler executing the process at the right moments

6 Chapter 1. Get started

Django uWSGI taskmanager, Release 1.0.2

Stop

Finally, to stop a running task, press the Stop task button and check that the executions stop.

1.1. The demo tutorial 7

Django uWSGI taskmanager, Release 1.0.2

8 Chapter 1. Get started

CHAPTER

TWO

HOW-TO GUIDES

2.1 How to manage tasks in the django admin site

This documentation is for users that want to manage tasks within the django admin site.

It is supposed that the users know the basic usage of a django admin interface, so CRUD operations will not be descibed
here.

Once you log into the admin site of your app, you’ll find a Task manager section, where you can manage the tasks.

In the django admin site, a Task manager section will appear, containing the app’s views.

9

Django uWSGI taskmanager, Release 1.0.2

2.1.1 Commands

The commands to use in tasks must be collected from the hosting project’s apps, among the defined management tasks,
in order to be available as launchable commands.

This can be done through the collectcommands management task1:

python manage.py collect_commands --excludecore -v2

The complete command’s syntax is visible in the command details page (click on the app name in the row of the
command).

1 excludecore ensures that core django tasks are not fetched.

10 Chapter 2. How-to guides

Django uWSGI taskmanager, Release 1.0.2

Commands can be deleted. This means that in order to create tasks out of them you will need to use the
collectcommands task again.

Only commands checked with the active flag will be available to generate tasks. So the best option to remove a
command and not allow users to geneate tasks out of it is to set its active status to false.

Note: It is possible to generate a task starting from the collectcommands command, so that the collection of available
commands can be launched through the django-uwsgi-taskmanager, too.

2.1. How to manage tasks in the django admin site 11

Django uWSGI taskmanager, Release 1.0.2

2.1.2 Tasks

Tasks is the main admin view, where all the action happens. Tasks can be listed, filtered, searched, created, modified
and removed using the standard CRUD processes available in django-admin.

Actions are available to have a task start or stop, both in the list view and in the detail view.

Tasks are sorted, by default, by the latest launch time. This way the most used tasks are shown first, avoiding to clutter
the list with unused tasks. Other sort criterion may be chosen by clicking on the column headers, as usual.

Tasks last results are shown both with a color code and with a verbose indication of the number of errors/warnings, if
any are there. A task with warnings and errors (yellow and orange color codes), may be perfectly ok, as many times
the errors may indicate some problems in the data source. A failed task (red code) requires immediate intervention, as
it indicates some missing code or logic in the task itself.

Clicking on the last result status opens a new tab with the log messages for that particular execution.

Hovering over the name of the task shows the descriptive note, if inserted by the task authors. This may describe aspects
of that task instance and peculiarities of the arguments to pass.

12 Chapter 2. How-to guides

Django uWSGI taskmanager, Release 1.0.2

2.1.3 Task structure

A task has four main sections:

• Definition: name, command, arguments, category and note;

• Scheduling: time of start and repetition period and rate;

• Last execution: spooler id, status, last execution datetime, last result, next execution, n. of errors and warnings;

• Reports: Each task’s execution generates a Report. Only the last 5 reports are kept and shown in the Task’s
detail view.

2.1.4 Defining a task

Fields in the definition section:

• name: name a task, use unique names with prefixes, to identify tasks visually

Note: It is important to understand that a command can be used multiple times in various tasks, with different
arguments. Use different names and specify differences verbosely in the note field to let other users make the
right choices on which task to use.

• command: select the command from the collected ones, in the command popup list;

• arguments: the command’s arguments in a special syntax:

Note: Single arguments should be separated by a comma (“,”), while multiple values in a single argument should
be separated by a blank space,

eg: -f, --secondarg param1 param2, --thirdarg=pippo, --thirdarg

• category: select from an existing one, or add a new one

2.1. How to manage tasks in the django admin site 13

Django uWSGI taskmanager, Release 1.0.2

• note: a descriptive note on how the command or its arguments are used

2.1.5 Task categories

In order to ease the search of tasks when they start to grow in numbers, a category can be assigned to each one. The
tasks list can then be filtered by category.

Note: Use simple, short words as categories and try to have less than 10 categories in all, in order not to confuse other
users.

2.1.6 Scheduling a task

Scheduling is performed through the following fields:

• scheduling: date and time, sets the moment in time when the task is going to be launched for the first time.

• repetition period: select one among minute, hour, day, month

• repetition rate: set an integer

To schedule a task to start in the future only once: set the scheduling field to a point in time in the future and press
the start button.

To schedule a task to start in the future and run periodically: set both the scheduling field and the repetition fields,
then press the start button.

To stop a scheduled start: press the stop button.

14 Chapter 2. How-to guides

Django uWSGI taskmanager, Release 1.0.2

2.1.7 Reading the task’s last execution status

The fields in this section are read-only and are meant to show information on the task’s lat execution.

• spooled at: the complete path to the file in the spooler, can be useful when debugging errors, but it’s an internal
information and should not be needed by standard users

• status: can be one of:

– IDLE: the task never started or was stopped,

– STARTED: the task is currently running,

– SCHEDULED: the task is going to start for the first time in the future,

– SPOOLED: the task has been put in the spooler and is going to start again in the future

• last datetime: the last execution date and time

• last result: last execution result

– OK: correctly executed, with no warnings, nor errors

– WARNINGS: correctly executed, but contains warnings, see the report

– ERRORS: correctly executed, but contains errors, see the report

– FAILED: there was an error while execution, see the report

• errors: the number of errors detected in the last execution

• warnings: the number of warnings detected in the last execution

Note: Consider that before starting for the first time, the task is being put in the spooler, so whenever checking the
status of a task, it can happen that its status shows SPOOLED, and after a few moments, refreshing the page, it will show
STARTED.

This is perfectly normal.

2.1. How to manage tasks in the django admin site 15

Django uWSGI taskmanager, Release 1.0.2

2.1.8 Reading the task’s reports

Once a task is finished, a report is generated and added to the reports section. Only the last 5 reports are left available
to the users, in order to save space.

Each report contains the result and invocation datetime fields, along with the tail of the last 10 lines logged during
execution.

Clicking on the show the log messages link, a new page cotaining the log messages is opened.

16 Chapter 2. How-to guides

Django uWSGI taskmanager, Release 1.0.2

If the task is still executing, the page will be refreshed, in order for the new messages to be added to the page.

On top of the page there is a toolbar, divided into three sections:

• the levels buttons (ALL, DEBUG, INFO, WARNING, ERROR) act as filters and clicking on one of them only the
messages of that type will be listed; the numbers appearing by each button indicate how many messages of that
type have been produced; buttons only appear when some message of that type is added to the log file;

• the search field allows to filter messages by a string: only messages containing the string are listed; clicking on
the ‘x’ button by the search field will reset all filters and is equivalent to pressing the ALL button;

• as for the commands on the right side of the toolbar:

– the raw logs button allows to open up a new page with the log files in raw text format

– the sticky mode button disable or enable the scrolling of the messages display to the bottom; this can be
used in order to disable following the logging messages and concentrating on some research;

Note: The complete list of log messages is rendered on a single page. This can be problematic whenever the list is
really long, as rendering times may be long too. The only solution that comes to mind is to implement tasks that doesn’t
log too many rows.

2.2 How to install django-uwsgi-taskmanager in an existing project

This documentation is for developers, that want to add this application to their django project.

Note: As a pre-requisite, the project should already be served through uWSGI.

0. Install the app with pip:

via PyPI:

pip install django-uwsgi-taskmanager

or via GitHub:

pip install git+https://github.com/openpolis/django-uwsgi-taskmanager.git

1. Add “taskmanager” to your INSTALLED_APPS setting like this:

INSTALLED_APPS = [
"django.contrib.admin",
...,
"taskmanager",

]

2. Run python manage.py migrate to create the taskmanager tables.

3. Run collectcommands management task to create taskmanager commands1:

python manage.py collectcommands --excludecore

4. Include the taskmanager URLConf in your project urls.py (optional)2:
1 excludecore ensures that core django tasks are not fetched.
2 the /taskmanager/logviewer view is added to show the complete logs message.

2.2. How to install django-uwsgi-taskmanager in an existing project 17

Django uWSGI taskmanager, Release 1.0.2

from django.contrib import admin
from django.urls import include, path

urlpatterns = [
path("admin/", admin.site.urls),
path("taskmanager/", include("taskmanager.urls")),

]

5. Set parameters in your settings file as below (optional):

UWSGI_TASKMANAGER_N_LINES_IN_REPORT_INLINE = 10
UWSGI_TASKMANAGER_N_REPORTS_INLINE = 3
UWSGI_TASKMANAGER_SHOW_LOGVIEWER_LINK = True
UWSGI_TASKMANAGER_USE_FILTER_COLLAPSE = True
UWSGI_TASKMANAGER_SAVE_LOGFILE = False

6. Configure the notifications, following the How to enable notifications guide (optional).

2.3 How to add django-uwsgi-taskmanager to a dockerized stack

This documentation is for developers, that want to add this application to an existing django application, within a
dockerized stack.

The following docker-compose.yml shows parts of a stack where an API service is provided. Note the web.command
value, invoking the uwsgi server in the container.

That invocation generates 4 processes able to fullfill the http(s) request-response cycle, and 2 processes checking and
running processess added to the spooler.

The /var/lib/uwsgi directory is defined as a persistent volume and contains the spooler files used by the app. This
ensures that the processes keep being executed at scheduled times even after a container’s restart.

Note: The yml file is partial and is only shown for illustration purposes.

version: "3.5"

services:
web:
container_name: service_web
restart: always
image: acme/project/service:latest
expose:
- "8000"

links:
- postgres:postgres

environment:
- DATABASE_URL=postgis://${POSTGRES_USER}:${POSTGRES_PASS}@postgres/${POSTGRES_DB}
- DEBUG=${DEBUG}
...
- UWSGI_TASKMANAGERN_OTIFICATIONS_SLACK_TOKEN=${UWSGI_TASKMANAGER_NOTIFICATIONS_

→˓SLACK_TOKEN}
(continues on next page)

18 Chapter 2. How-to guides

Django uWSGI taskmanager, Release 1.0.2

(continued from previous page)

- UWSGI_TASKMANAGER_NOTIFICATIONS_SLACK_CHANNELS=${UWSGI_TASKMANAGER_NOTIFICATIONS_
→˓SLACK_CHANNELS}

- CI_COMMIT_SHA=${CI_COMMIT_SHA}
volumes:
- public:/app/public
- uwsgi_spooler:/var/lib/uwsgi
- weblogs:/var/log

command: /usr/local/bin/uwsgi --socket=:8000 --master \
--env DJANGO_SETTINGS_MODULE=config.settings
--pythonpath=/app --module=config.wsgi --callable=application \
--processes=4 --spooler=/var/lib/uwsgi --spooler-processes=2

...

volumes:
public:
name: service_public

uwsgi_spooler:
name: service_uwsgi_spooler

weblogs:
name: service_weblogs

networks:
default:
external:
name: webproxy

2.4 How to enable notifications

The notifications system enables django-uwsgi-taskmanager to send custom notifications at the end of tasks
execution. Tasks may be sent according to the specified level parameter in the handler:

• failed: whenever failures are trapped during the execution,

• errors or warnings: when the execution terminates correctly, but errors or warnings are detected,

• ok: when everything runs smoothly, just to know.

From release 2.1.0, the notifications system has been refactored into a pluggable system. The subsystems ready to be
plugged are: Slack and email. Development of a custom subsystem is possible, and a small developer guide is present
in the last paragraph of this section.

To enable the Slack notifications subsystem, you have to first install the required packages, which are not included by
default. To do that, just:

pip install django-uwsgi-taskmanager[notifications]

This will install the django-uwsgi-taskmanager package from PyPI, including the optional slackclient dependency
required to make Slack notifications work.

Email notifications are instead handled using Django django.core.mail module, so no further dependencies are needed
and they should work out of the box, given you have at least one email backend properly configured.

2.4. How to enable notifications 19

https://slack.dev/python-slackclient/
https://docs.djangoproject.com/en/2.2/topics/email/
https://docs.djangoproject.com/en/2.2/topics/email/#email-backends

Django uWSGI taskmanager, Release 1.0.2

Then, you have to configure the UWSGI_TASKMANAGER_NOTIFICATION_HANDLERS setting variable as a dictionary
with the chosen handlers.

For example, to set up the slack notification handler:

UWSGI_TASKMANAGER_NOTIFICATION_HANDLERS = {
"slack": {

"class": "taskmanager.notifications.SlackNotificationHandler",
"level": "errors",
"token": env("UWSGI_TASKMANAGER_NOTIFICATIONS_SLACK_TOKEN", default=""),
"channel": env("UWSGI_TASKMANAGER_NOTIFICATIONS_SLACK_CHANNELS", default=""),

},
}

with the following env variables set:

• UWSGI_TASKMANAGER_NOTIFICATIONS_SLACK_TOKEN, the Slack token as string.

• UWSGI_TASKMANAGER_NOTIFICATIONS_SLACK_CHANNELS, a list of strings representing the names or ids of the
channels which will receive the notifications.

For the email notification handler:

UWSGI_TASKMANAGER_NOTIFICATION_HANDLERS = {
"mail": {

"class": "taskmanager.notifications.MailNotificationHandler",
"level": "errors",
"from_email": env("UWSGI_TASKMANAGER_NOTIFICATIONS_EMAIL_FROM", default=""),
"recipients": env("UWSGI_TASKMANAGER_NOTIFICATIONS_EMAIL_RECIPIENTS", default="

→˓"),
},

}

with the following env variables:

• UWSGI_TASKMANAGER_NOTIFICATIONS_EMAIL_FROM, the “from address” you want your outgoing notification
emails to use.

• UWSGI_TASKMANAGER_NOTIFICATIONS_EMAIL_RECIPIENTS, a list of strings representing the recipients of the
notifications.

More than one handler can be added. Notifications will be sent to all parties defined.

2.4.1 Developing a custom handler

The basic notification handler is defined in taskmanager.notifications.NotificationHandler, as an abstract
class. All handlers subclass this one.

Handlers class can be created anywhere in the python import path. If found, they will be imported by the taskmanager
application, during the app startup, and registered as active handler.

In order to setup the handler in the settings, a custom dictionary must be created, just like the two examples above. The
dictionary needs to be created, with the class and level keys, at least.

The class key will be popped out of the dictionary and used to instantiate the handler, with the others keys passed as
arguments.

The emit_notifications method of the Report class will call all registered handlers and emit the notifications. It
is called at the end of taskmanager.tasks.exec_command_task.

20 Chapter 2. How-to guides

Django uWSGI taskmanager, Release 1.0.2

Dependencies, should they be needed, must be installed separately.

Feel free to create a pull request if you want to add a notification handler directly in the package.

2.5 How to contribute to the project

2.5.1 Documentation

This documentation is written using sphinx. It follows the guidelines on writing technical documentation set by Daniele
Procida, and is contained in the docs directory of the project.

In order to contribute to the documentation, the following packages should be added to the virtualenv on the developer
machine:

sphinx
sphinx-django-command
sphinx-rtd-theme
sphinx-autobuild
pyembed-rst

Then, from inside the docs directory:

make clean
make build html

The makefile has been customised with respect to the original one generated by the sphinx-quickstart script,
and it contains a livehtml target, that allows to rebuild the html output each time the rst source files are changed and
saved.

make livehtml

2.5.2 Development

Source code is available on https://github.com/openpolis/django-uwsgi-taskmanager.

Tests can be launched with

python demo/manage.py test

The source code is tested for syntax and format using black.

2.6 How to debug tasks

Since the uwsgi uses the spooler processes, debugging the task execution in these process requires a hack through
remote debugging.

The following procedure works in pyCharm IDE.

1. pip install pydevd-pycharm==191.6605.12 (versions must be upgraded, see preferences/about)

2. open a shell in the virtual environment and prepare this command with the following set of arguments:

2.5. How to contribute to the project 21

https://www.sphinx-doc.org/en/master/index.html
https://www.divio.com/blog/documentation/
https://github.com/openpolis/django-uwsgi-taskmanager
https://black.readthedocs.io/en/stable/

Django uWSGI taskmanager, Release 1.0.2

uwsgi --http=:8000 --master \
--chdir=/Users/gu/Workspace/django-uwsgi-taskmanager/demo \
--static-map /static=./static \
--module=demo.wsgi --callable=application \
--pythonpath=/Users/gu/Workspace/django-uwsgi-taskmanager/demo \
--processes=2 \
--spooler=./spooler --spooler-processes=1

3. define a python remote debug configuration on pycharm, using localhost:4444 as host:port

4. add this snippet of code right before the point you want the execution to break

import pydevd
pydevd.settrace('localhost', port=4444, stdoutToServer=True,␣
→˓stderrToServer=True)

use wsgi.py to debug the request/response processes and taskmanager/models.py or
taskmanager/tasks.py, to debug the command execution

5. add breakpoints

6. launch the uwsgi command in terminal

7. launch the debugger in pycharm

8. navigate the admin UI, create and launch the task

9. debug!

When no debugger is activated, this can be used to test the uwsgi-spooler in a local development environment. Just
remove the code snippets and launch the uwsgi command from the terminal.

You’ll be able to manage tasks and execute the commands using the uwsgi spooler processes.

22 Chapter 2. How-to guides

CHAPTER

THREE

REFERENCE

Classes and functions are documented here automatically, extracting information from the comments in the source
code.

3.1 taskmanager.models

Define Django models for the taskmanager app.

Classes

AppCommand(*args, **kwargs) An application command representation.
Report(*args, **kwargs) A report of a task execution with log.
Task(*args, **kwargs) A command related task.
TaskCategory(*args, **kwargs) A task category, used to group tasks when numbers go

up.

3.2 taskmanager.management.base

Base classes for writing management commands.

Classes

LoggingBaseCommand([stdout, stderr, ...]) A subclass of BaseCommand that logs messages using
the django logging system.

23

Django uWSGI taskmanager, Release 1.0.2

3.3 taskmanager.logging

Define utils for logging.

Classes

NoTerminatorStreamHandler([stream]) A stream handler.

3.4 taskmanager.tasks

Define uWSGI exec command tasks for the taskmanager app.

taskmanager.tasks.exec_command_task(curr_task, *args, **kwargs)
Execute the command of a Task.

Parameters

• curr_task (Task) – instance of the task to execute

• args – unnamed arguments

• kwargs – named arguments

24 Chapter 3. Reference

CHAPTER

FOUR

DISCUSSIONS

Although Celery is the most used solution to execute distributed asynchronous tasks in python and django-channels
is the new hype, this project offers a solution based on uWSGI spooler, which requires no additional components, is
particularly easy to setup, and has a straight learning curve.

4.1 Pre-requisites

uWSGI is normally used ad an application server, to accept requests, transfer control to the python web application
using the wsgi protocol, and send the response back.

If configured as shown in this documentation, it can spawn some processes to handle asynchronous tasks, reading the
queue from a specified spool directory.

The following snippet of code starts a uWSGI server able to process both HTTP requests and asynchronous tasks1:

uwsgi --check-static=./static --http=:8000 --master \
--module=wsgi --callable=application \
--pythonpath=./ \
--processes=4 --spooler=./uwsgi-spooler --spooler-processes=2

1 Setting up uWSGI in production usually involves some sort of frontend proxy, but this is not the place to discuss it.

25

http://www.celeryproject.org/
https://realpython.com/asynchronous-tasks-with-django-and-celery/
https://blog.heroku.com/in_deep_with_django_channels_the_future_of_real_time_apps_in_django
https://uwsgi-docs.readthedocs.io/en/latest/Spooler.html?highlight=spooler
https://blog.selectel.com/uwsgi-spooler/

Django uWSGI taskmanager, Release 1.0.2

• 4 processes will accept HTTP requests and send HTTP responses;

• 2 processes will check the spooler and execute tasks there;

• 1 master process will superintend all other processes.

• the ./uwsgi-spooler path is the physical location on disk where the spooled tasks will be kept

26 Chapter 4. Discussions

PYTHON MODULE INDEX

t
taskmanager.logging, 24
taskmanager.management.base, 23
taskmanager.models, 23
taskmanager.tasks, 24

27

Django uWSGI taskmanager, Release 1.0.2

28 Python Module Index

INDEX

M
module

taskmanager.logging, 24
taskmanager.management.base, 23
taskmanager.models, 23
taskmanager.tasks, 24

T
taskmanager.logging

module, 24
taskmanager.management.base

module, 23
taskmanager.models

module, 23
taskmanager.tasks

module, 24
taskmanager.tasks.exec_command_task() (in mod-

ule taskmanager.tasks), 24

29

	Get started
	The demo tutorial
	Installation
	Usage
	Add and launch a task
	Follow task execution in the lov-viewer window
	Scheduling
	Periodicity
	Stop

	How-to guides
	How to manage tasks in the django admin site
	Commands
	Tasks
	Task structure
	Defining a task
	Task categories
	Scheduling a task
	Reading the task’s last execution status
	Reading the task’s reports

	How to install django-uwsgi-taskmanager in an existing project
	How to add django-uwsgi-taskmanager to a dockerized stack
	How to enable notifications
	Developing a custom handler

	How to contribute to the project
	Documentation
	Development

	How to debug tasks

	Reference
	taskmanager.models
	taskmanager.management.base
	taskmanager.logging
	taskmanager.tasks

	Discussions
	Pre-requisites

	Python Module Index
	Index

