

Welcome to Django uWSGI taskmanager’s documentation!

uWSGI taskmanager is a Django application that can be used to launch management tasks asynchronously,
via the standard Django admin interface, using uWSGI spooler [https://uwsgi-docs.readthedocs.io/en/latest/Spooler.html?highlight=spooler].

The rationale for this app is to let people having access to the django admin interface,
launch or schedule management tasks, without having to consult the developers or operations teams.

The features include:

	start and stop tasks via the django admin interface

	schedule tasks for future executions

	program periodic tasks launch

	check, filter and download the generated log messages, watching how created live

	simply write a standard Django Command class (your app doesn’t need to interact with Django uWSGI Taskmanager)

	get notifications via Slack, email or build a custom notification class

[image: Animateg GIF]
An animated GIF of how it all works. Click to enlarge.

Contents

	Get started
	The demo tutorial

	How-to guides
	How to manage tasks in the django admin site

	How to install django-uwsgi-taskmanager in an existing project

	How to add django-uwsgi-taskmanager to a dockerized stack

	How to enable notifications

	How to contribute to the project

	How to debug tasks

	Reference
	taskmanager.models

	taskmanager.management.base

	taskmanager.logging

	taskmanager.tasks

	Discussions
	Pre-requisites

Get started

Following the demo tutorial, it will be possible to install, configure and use django-uwsgi-taskmanager for a
simple demo django project and have an idea of its basic workings.

Further knowledge can be found in the How-to guides.

The demo tutorial

Clone the project from github onto your hard disk:

git clone https://github.com/openpolis/django-uwsgi-taskmanager
cd django-uwsgi-taskmanager

There is a basic Django project under the demo directory, with a uwsgi.ini file and four directories
(media, spooler, static, venv).

demo/
├── demo/
│ ├── __init__.py
│ ├── settings.py
│ ├── urls.py
│ └── wsgi.py
├── manage.py
├── media/
├── spooler/
├── static/
├── uwsgi.ini
└── venv/

Modify the content of uwsgi.ini, if needed, for example by changing the port, if already in use,
and adding the number of processes.

Following is the content of my file, while writing this tutorial:

[uwsgi]
chdir = %d
env = DJANGO_SETTINGS_MODULE=demo.settings
http-socket = :8000
master = true
module = demo.wsgi
plugin = python3
pythonpath = %d
processes = 2
spooler-processes = 1
spooler = %dspooler
static-map = /static/=%dstatic
virtualenv = %dvenv

Note

Remember not to use this configuration in production, as it lets uWSGI handle all http connections, even for
static content. Usually a frontend server, and/or CDN connections are used along the uWSGI app server.

Installation

Enter the demo directory, then create and activate the virtual environments:

$ cd demo
$ mkdir -p venv
$ python3 -m venv venv
$ source venv/bin/activate

Install Django uWSGI taskmanager:

(venv) $ pip install django-uwsgi-taskmanager

Install uWSGI (if you use the uWSGI binary from your OS, you can skip this step):

(venv) $ pip install uwsgi

Collect all static files:

(venv) $ python manage.py collectstatic

Create all the tables:

(venv) $ python manage.py migrate

Collect all commands 1:

(venv) $ python manage.py collectcommands --excludecore

Create a super user to login to the admin interface:

(venv) $ python manage.py createsuperuser

Start the project with uWSGI:

(venv) $ uwsgi --ini uwsgi.ini

Usage

Visit http://127.0.0.1:8000/admin/ 2 and login with the credentials set in the createsuperuser task.

Add and launch a task

Proceed as indicated in the video, to create a test task and launch it.

Please note that the video refers to an older release and the UI interface may have changes slightly.
The sense of the operations still are perfectly valid.

 How-to guides

How-to guides

Contents

	How to manage tasks in the django admin site
	Commands

	Tasks

	Task structure

	Defining a task

	Task categories

	Scheduling a task

	Reading the task’s last execution status

	Reading the task’s reports

	How to install django-uwsgi-taskmanager in an existing project

	How to add django-uwsgi-taskmanager to a dockerized stack

	How to enable notifications
	Developing a custom handler

	How to contribute to the project
	Documentation

	Development

	How to debug tasks

 How to manage tasks in the django admin site

How to manage tasks in the django admin site

This documentation is for users that want to manage tasks within the django admin site.

It is supposed that the users know the basic usage of a django admin interface,
so CRUD operations will not be descibed here.

Once you log into the admin site of your app, you’ll find a Task manager section, where you can
manage the tasks.

In the django admin site, a Task manager section will appear, containing the app’s views.

[image: The task manager section appears]

Commands

The commands to use in tasks must be collected from the hosting project’s apps,
among the defined management tasks, in order to be available as
launchable commands.

This can be done through the collectcommands management task 1:

python manage.py collect_commands --excludecore -v2

[image: The list of commands]
The complete command’s syntax is visible in the command details page (click on the app name in the row of the command).

[image: A command's syntax]
Commands can be deleted. This means that in order to create tasks out of them you will need to use the collectcommands
task again.

Only commands checked with the active flag will be available to generate tasks. So the best option to remove a command
and not allow users to geneate tasks out of it is to set its active status to false.

Note

It is possible to generate a task starting from the collectcommands command, so that the collection of
available commands can be launched through the django-uwsgi-taskmanager, too.

Tasks

Tasks is the main admin view, where all the action happens.
Tasks can be listed, filtered, searched, created, modified and removed
using the standard CRUD processes available in django-admin.

[image: Django tasks list view, with custom bulk actions]
Actions are available to have a task start or stop, both in the list view and in the detail view.

[image: Django task details view with custom buttons]
Tasks are sorted, by default, by the latest launch time. This way the most used tasks are shown first,
avoiding to clutter the list with unused tasks. Other sort criterion may be chosen by clicking on the column
headers, as usual.

Tasks last results are shown both with a color code and with a verbose indication of the number of errors/warnings,
if any are there.
A task with warnings and errors (yellow and orange color codes), may be perfectly ok, as many times the errors may
indicate some problems in the data source.
A failed task (red code) requires immediate intervention, as it indicates some missing code or logic in the task itself.

Clicking on the last result status opens a new tab with the log messages for that particular execution.

Hovering over the name of the task shows the descriptive note, if inserted by the task authors. This may
describe aspects of that task instance and peculiarities of the arguments to pass.

Task structure

A task has four main sections:

	Definition: name, command, arguments, category and note;

	Scheduling: time of start and repetition period and rate;

	Last execution: spooler id, status, last execution datetime, last result, next execution, n. of errors and warnings;

	Reports: Each task’s execution generates a Report. Only the last 5 reports are kept and shown in the Task’s detail view.

Defining a task

[image: Django definition fields]
Fields in the definition section:

	name: name a task, use unique names with prefixes, to identify tasks visually

Note

It is important to understand that a command can be used multiple times in various tasks, with different arguments.
Use different names and specify differences verbosely in the note field to let other users make the right
choices on which task to use.

	command: select the command from the collected ones, in the command popup list;

	arguments: the command’s arguments in a special syntax:

Note

Single arguments should be separated by a comma (“,”),
while multiple values in a single argument should be separated by a blank space,

eg: -f, --secondarg param1 param2, --thirdarg=pippo, --thirdarg

	category: select from an existing one, or add a new one

	note: a descriptive note on how the command or its arguments are used

Task categories

In order to ease the search of tasks when they start to grow in numbers, a category can be assigned to each one.
The tasks list can then be filtered by category.

Note

Use simple, short words as categories and try to have less than 10 categories in all,
in order not to confuse other users.

Scheduling a task

[image: Django scheduling fields]
Scheduling is performed through the following fields:

	scheduling: date and time, sets the moment in time when the task is going to be launched for the first time.

	repetition period: select one among minute, hour, day, month

	repetition rate: set an integer

To schedule a task to start in the future only once: set the scheduling field to a point in time in the future
and press the start button.

To schedule a task to start in the future and run periodically: set both the scheduling
field and the repetition fields, then press the start button.

To stop a scheduled start: press the stop button.

Reading the task’s last execution status

[image: Django task's last execution status]
The fields in this section are read-only and are meant to show information on the task’s lat execution.

	spooled at: the complete path to the file in the spooler, can be useful when debugging errors,
but it’s an internal information and should not be needed by standard users

	status: can be one of:

	IDLE: the task never started or was stopped,

	STARTED: the task is currently running,

	SCHEDULED: the task is going to start for the first time in the future,

	SPOOLED: the task has been put in the spooler and is going to start again in the future

	last datetime: the last execution date and time

	last result: last execution result

	OK: correctly executed, with no warnings, nor errors

	WARNINGS: correctly executed, but contains warnings, see the report

	ERRORS: correctly executed, but contains errors, see the report

	FAILED: there was an error while execution, see the report

	errors: the number of errors detected in the last execution

	warnings: the number of warnings detected in the last execution

Note

Consider that before starting for the first time, the task is being put in the spooler, so
whenever checking the status of a task, it can happen that its status shows SPOOLED, and
after a few moments, refreshing the page, it will show STARTED.

This is perfectly normal.

Reading the task’s reports

[image: Django tasks reports]
Once a task is finished, a report is generated and added to the reports section. Only the last 5 reports
are left available to the users, in order to save space.

Each report contains the result and invocation datetime fields, along with the tail of the last 10
lines logged during execution.

Clicking on the show the log messages link, a new page cotaining the log messages is opened.

[image: Django tasks report with log messages]
If the task is still executing, the page will be refreshed, in order for the new messages to be
added to the page.

On top of the page there is a toolbar, divided into three sections:

	the levels buttons (ALL, DEBUG, INFO, WARNING, ERROR) act as filters and
clicking on one of them only the messages of that type will be listed;
the numbers appearing by each button indicate how many messages of that type have been produced;
buttons only appear when some message of that type is added to the log file;

	the search field allows to filter messages by a string: only messages containing the string are listed;
clicking on the ‘x’ button by the search field will reset all filters and is equivalent to pressing the ALL button;

	as for the commands on the right side of the toolbar:

	the raw logs button allows to open up a new page with the log files in raw text format

	the sticky mode button disable or enable the scrolling of the messages display to the bottom; this can be used in order
to disable following the logging messages and concentrating on some research;

Note

The complete list of log messages is rendered on a single page. This can be problematic whenever the
list is really long, as rendering times may be long too. The only solution that comes to mind is to implement
tasks that doesn’t log too many rows.

Footnotes

	1

	excludecore ensures that core django tasks are not fetched.

 How to install django-uwsgi-taskmanager in an existing project

How to install django-uwsgi-taskmanager in an existing project

This documentation is for developers, that want to add this application to their django project.

Note

As a pre-requisite, the project should already be served through uWSGI.

	Install the app with pip:

via PyPI:

pip install django-uwsgi-taskmanager

or via GitHub:

pip install git+https://github.com/openpolis/django-uwsgi-taskmanager.git

	Add “taskmanager” to your INSTALLED_APPS setting like this:

INSTALLED_APPS = [
 "django.contrib.admin",
 # ...,
 "taskmanager",
]

	Run python manage.py migrate to create the taskmanager tables.

	Run collectcommands management task to create taskmanager commands 1:

python manage.py collectcommands --excludecore

	Include the taskmanager URLConf in your project urls.py (optional) 2:

from django.contrib import admin
from django.urls import include, path

urlpatterns = [
 path("admin/", admin.site.urls),
 path("taskmanager/", include("taskmanager.urls")),
]

	Set parameters in your settings file as below (optional):

UWSGI_TASKMANAGER_N_LINES_IN_REPORT_INLINE = 10
UWSGI_TASKMANAGER_N_REPORTS_INLINE = 3
UWSGI_TASKMANAGER_SHOW_LOGVIEWER_LINK = True
UWSGI_TASKMANAGER_USE_FILTER_COLLAPSE = True
UWSGI_TASKMANAGER_SAVE_LOGFILE = False

	Configure the notifications, following the How to enable notifications guide (optional).

Footnotes

	1

	excludecore ensures that core django tasks are not fetched.

	2

	the /taskmanager/logviewer view is added to show the complete logs message.

 How to add django-uwsgi-taskmanager to a dockerized stack

How to add django-uwsgi-taskmanager to a dockerized stack

This documentation is for developers, that want to add this application to an existing django application,
within a dockerized stack.

The following docker-compose.yml shows parts of a stack where an API service is provided. Note the web.command
value, invoking the uwsgi server in the container.

That invocation generates 4 processes able to fullfill the http(s) request-response cycle, and 2 processes
checking and running processess added to the spooler.

The /var/lib/uwsgi directory is defined as a persistent volume and contains the spooler files
used by the app. This ensures that the processes keep being executed at scheduled times even after
a container’s restart.

Note

The yml file is partial and is only shown for illustration purposes.

version: "3.5"

services:
 web:
 container_name: service_web
 restart: always
 image: acme/project/service:latest
 expose:
 - "8000"
 links:
 - postgres:postgres
 environment:
 - DATABASE_URL=postgis://${POSTGRES_USER}:${POSTGRES_PASS}@postgres/${POSTGRES_DB}
 - DEBUG=${DEBUG}
 ...
 - UWSGI_TASKMANAGERN_OTIFICATIONS_SLACK_TOKEN=${UWSGI_TASKMANAGER_NOTIFICATIONS_SLACK_TOKEN}
 - UWSGI_TASKMANAGER_NOTIFICATIONS_SLACK_CHANNELS=${UWSGI_TASKMANAGER_NOTIFICATIONS_SLACK_CHANNELS}
 - CI_COMMIT_SHA=${CI_COMMIT_SHA}
 volumes:
 - public:/app/public
 - uwsgi_spooler:/var/lib/uwsgi
 - weblogs:/var/log
 command: /usr/local/bin/uwsgi --socket=:8000 --master \
 --env DJANGO_SETTINGS_MODULE=config.settings
 --pythonpath=/app --module=config.wsgi --callable=application \
 --processes=4 --spooler=/var/lib/uwsgi --spooler-processes=2

 ...

volumes:
 public:
 name: service_public
 uwsgi_spooler:
 name: service_uwsgi_spooler
 weblogs:
 name: service_weblogs

networks:
 default:
 external:
 name: webproxy

 How to enable notifications

How to enable notifications

The notifications system enables django-uwsgi-taskmanager to send custom notifications
at the end of tasks execution.
Tasks may be sent according to the specified level parameter in the handler:

	failed: whenever failures are trapped during the execution,

	errors or warnings: when the execution terminates correctly, but errors or warnings are detected,

	ok: when everything runs smoothly, just to know.

From release 2.1.0, the notifications system has been refactored into a pluggable system.
The subsystems ready to be plugged are: Slack and email.
Development of a custom subsystem is possible, and a small developer guide is present
in the last paragraph of this section.

To enable the Slack notifications subsystem, you have to first install the
required packages, which are not included by default. To do that, just:

pip install django-uwsgi-taskmanager[notifications]

This will install the django-uwsgi-taskmanager package from PyPI, including the optional slackclient [https://slack.dev/python-slackclient/] dependency
required to make Slack notifications work.

Email notifications are instead handled using Django django.core.mail [https://docs.djangoproject.com/en/2.2/topics/email/]
module, so no further dependencies are needed and they should work out of the box, given you have at
least one email backend [https://docs.djangoproject.com/en/2.2/topics/email/#email-backends] properly
configured.

Then, you have to configure the UWSGI_TASKMANAGER_NOTIFICATION_HANDLERS setting variable
as a dictionary with the chosen handlers.

For example, to set up the slack notification handler:

UWSGI_TASKMANAGER_NOTIFICATION_HANDLERS = {
 "slack": {
 "class": "taskmanager.notifications.SlackNotificationHandler",
 "level": "errors",
 "token": env("UWSGI_TASKMANAGER_NOTIFICATIONS_SLACK_TOKEN", default=""),
 "channel": env("UWSGI_TASKMANAGER_NOTIFICATIONS_SLACK_CHANNELS", default=""),
 },
}

with the following env variables set:

	UWSGI_TASKMANAGER_NOTIFICATIONS_SLACK_TOKEN, the Slack token as string.

	UWSGI_TASKMANAGER_NOTIFICATIONS_SLACK_CHANNELS, a list of strings representing the names or ids of the channels which will receive the notifications.

For the email notification handler:

UWSGI_TASKMANAGER_NOTIFICATION_HANDLERS = {
 "mail": {
 "class": "taskmanager.notifications.MailNotificationHandler",
 "level": "errors",
 "from_email": env("UWSGI_TASKMANAGER_NOTIFICATIONS_EMAIL_FROM", default=""),
 "recipients": env("UWSGI_TASKMANAGER_NOTIFICATIONS_EMAIL_RECIPIENTS", default=""),
 },
}

with the following env variables:

	UWSGI_TASKMANAGER_NOTIFICATIONS_EMAIL_FROM, the “from address” you want your outgoing notification emails to use.

	UWSGI_TASKMANAGER_NOTIFICATIONS_EMAIL_RECIPIENTS, a list of strings representing the recipients of the notifications.

More than one handler can be added. Notifications will be sent to all parties defined.

Developing a custom handler

The basic notification handler is defined in taskmanager.notifications.NotificationHandler,
as an abstract class. All handlers subclass this one.

Handlers class can be created anywhere in the python import path. If found, they will be imported
by the taskmanager application, during the app startup, and registered as active handler.

In order to setup the handler in the settings, a custom dictionary must be created,
just like the two examples above. The dictionary needs to be created, with the
class and level keys, at least.

The class key will be popped out of the dictionary and used to instantiate the handler,
with the others keys passed as arguments.

The emit_notifications method of the Report class will call all registered handlers and
emit the notifications.
It is called at the end of taskmanager.tasks.exec_command_task.

Dependencies, should they be needed, must be installed separately.

Feel free to create a pull request if you want to add a notification handler directly in the package.

 How to contribute to the project

How to contribute to the project

Documentation

This documentation is written using sphinx [https://www.sphinx-doc.org/en/master/index.html]. It follows the guidelines on writing technical documentation [https://www.divio.com/blog/documentation/]
set by Daniele Procida, and is contained in the docs directory of the project.

In order to contribute to the documentation, the following packages should be added to the virtualenv
on the developer machine:

sphinx
sphinx-django-command
sphinx-rtd-theme
sphinx-autobuild
pyembed-rst

Then, from inside the docs directory:

make clean
make build html

The makefile has been customised with respect to the original one generated by the sphinx-quickstart script,
and it contains a livehtml target, that allows to rebuild the html output each time the rst source files are
changed and saved.

make livehtml

Development

Source code is available on https://github.com/openpolis/django-uwsgi-taskmanager.

Tests can be launched with

python demo/manage.py test

The source code is tested for syntax and format using black [https://black.readthedocs.io/en/stable/].

 How to debug tasks

How to debug tasks

Since the uwsgi uses the spooler processes, debugging the task execution in these process requires
a hack through remote debugging.

The following procedure works in pyCharm IDE.

	pip install pydevd-pycharm==191.6605.12 (versions must be upgraded, see preferences/about)

	open a shell in the virtual environment and prepare this command with the following set of arguments:

uwsgi --http=:8000 --master \
 --chdir=/Users/gu/Workspace/django-uwsgi-taskmanager/demo \
 --static-map /static=./static \
 --module=demo.wsgi --callable=application \
 --pythonpath=/Users/gu/Workspace/django-uwsgi-taskmanager/demo \
 --processes=2 \
 --spooler=./spooler --spooler-processes=1

	define a python remote debug configuration on pycharm, using localhost:4444 as host:port

	add this snippet of code right before the point you want the execution to break

import pydevd
pydevd.settrace('localhost', port=4444, stdoutToServer=True, stderrToServer=True)

use wsgi.py to debug the request/response processes
and taskmanager/models.py or taskmanager/tasks.py, to debug the command execution

	add breakpoints

	launch the uwsgi command in terminal

	launch the debugger in pycharm

	navigate the admin UI, create and launch the task

	debug!

When no debugger is activated, this can be used to test the uwsgi-spooler in a local development environment.
Just remove the code snippets and launch the uwsgi command from the terminal.

You’ll be able to manage tasks and execute the commands using the uwsgi spooler processes.

 Reference

Reference

Classes and functions are documented here automatically,
extracting information from the comments in the source code.

taskmanager.models

Define Django models for the taskmanager app.

Classes

	AppCommand(*args, **kwargs)

	An application command representation.

	Report(*args, **kwargs)

	A report of a task execution with log.

	Task(*args, **kwargs)

	A command related task.

	TaskCategory(*args, **kwargs)

	A task category, used to group tasks when numbers go up.

taskmanager.management.base

Base classes for writing management commands.

Classes

	LoggingBaseCommand([stdout, stderr, ...])

	A subclass of BaseCommand that logs messages using the django logging system.

taskmanager.logging

Define utils for logging.

Classes

	NoTerminatorStreamHandler([stream])

	A stream handler.

taskmanager.tasks

Define uWSGI exec command tasks for the taskmanager app.

	
taskmanager.tasks.exec_command_task(curr_task, *args, **kwargs)

	Execute the command of a Task.

	Parameters

	
	curr_task (Task) – instance of the task to execute

	args – unnamed arguments

	kwargs – named arguments

 Discussions

Discussions

Although Celery [http://www.celeryproject.org/] is the most used solution to execute
distributed asynchronous tasks in python [https://realpython.com/asynchronous-tasks-with-django-and-celery/] and django-channels [https://blog.heroku.com/in_deep_with_django_channels_the_future_of_real_time_apps_in_django] is the new hype,
this project offers a solution based on uWSGI spooler [https://uwsgi-docs.readthedocs.io/en/latest/Spooler.html?highlight=spooler],
which requires no additional components, is particularly easy to setup,
and has a straight learning curve [https://blog.selectel.com/uwsgi-spooler/].

Pre-requisites

uWSGI is normally used ad an application server, to accept requests, transfer control to the python
web application using the wsgi protocol, and send the response back.

If configured as shown in this documentation, it can spawn some processes to handle asynchronous
tasks, reading the queue from a specified spool directory.

[image: The role of the spooler]
The following snippet of code starts a uWSGI server able to process both
HTTP requests and asynchronous tasks 1:

uwsgi --check-static=./static --http=:8000 --master \
 --module=wsgi --callable=application \
 --pythonpath=./ \
 --processes=4 --spooler=./uwsgi-spooler --spooler-processes=2

	4 processes will accept HTTP requests and send HTTP responses;

	2 processes will check the spooler and execute tasks there;

	1 master process will superintend all other processes.

	the ./uwsgi-spooler path is the physical location on disk
where the spooled tasks will be kept

Footnotes

	1

	Setting up uWSGI in production usually involves some sort of frontend proxy,
but this is not the place to discuss it.

 Python Module Index

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 taskmanager	

 	
 	
 taskmanager.logging	

 	
 	
 taskmanager.management.base	

 	
 	
 taskmanager.models	

 	
 	
 taskmanager.tasks	

 Index

Index

 M
 | T

M

 	
 	
 module

 	taskmanager.logging

 	taskmanager.management.base

 	taskmanager.models

 	taskmanager.tasks

T

 	
 	
 taskmanager.logging

 	module

 	
 taskmanager.management.base

 	module

 	
 	
 taskmanager.models

 	module

 	
 taskmanager.tasks

 	module

 	taskmanager.tasks.exec_command_task() (in module taskmanager.tasks)

_images/admin_gui_6.png
Defi

Name: Atest
Command: taskmanager.test_command 4 .
Arguments: foo, bar, -a, b, ~verbosity=2

4
. parameters with a blank space . eg:, secondarg param1 param, ~thirdarg=pippo, thirdarg

‘Separate arguments with a comma

Category: Provat o 4 %
Ghoose a category for ths task
Note: Atest of some kind.

Anote on how ths task is used.

_images/admin_gui_7.png
Scheduiing: Date: | o)
Tme: | @

Note: You are 1 hour shead of server time.

N

_images/admin_gui_4.png
ag

Scegli Task da modificare

all Cerca
Azione: | —— [J(vai | 0di64 selezionati
) UTMORISULTATO NOME WvocazionE
O M2WARNINGS Amministratori import_memberships_from minint_current
comunali comenti __context=comuni --verbosity=3 --loc-desc-MARMENTINO%
(singolo comune) __memberships-update-strategy=keep_old --clear-cache
N 73 Import gruppi import_gruppi_parlamento_meta
parlamentari (18) 18 --clear-loader-cache —-verbosity=3
lersl
o Bk Aree ISTAT import._ from_istat
--verbosity:
N 73 Import camera import_governo_parlamento_memberships
--latest --clear-parser-cache --context=camera --verbosity=2
--clear-loader-cache
o Bk Import senato import_governo_parlamento_memberships
--latest --clear-parser-cache --context=senato --verbosity=2
--clear-loader-cache
N 73 Generazione delle script_generate_appointments_:
relazioni dinomina --verbosity=2
) W 2ErRORS Correct comuni with script_correct_comuni.

o area or children

--verbosity=2

sTaTus

IDLE

SPOOLED

SPOOLED

SPOOLED

SPOOLED

SPOOLED

SPOOLED

AGGIUNGI TASK +

FILTRA

ULTIMO LANCIO. ~ PROSSIMO LANCIO RIPETIZIONE
Venerdi 31 Luglio 2020 13:17 - -

Giovedi 09 Luglio 2020 08:00 Venerdi 10 Luglio 2020 08:00 1 day
Giovedi 09 Luglio 2020 08:00 Venerdi 10 Luglio 2020 08:00 1 day
Giovedi 09 Luglio 2020 06:00 Venerdi 10 Luglio 2020 06:00 1 day
Giovedi 09 Luglio 2020 06:00 Venerdi 10 Luglio 2020 06:00 1 day
Giovedi 09 Luglio 2020 06:00 Giovedi 09 Luglio 2020 12:00 6 hour
Giovedi 09 Luglio 2020 06:00 Venerdi 10 Luglio 2020 06:00 1 day

_images/admin_gui_5.png
Django administration ME, ADMIN. VIEW SITE / CHANGE PASSWO

Home Task manager » Tasks » A test (dle)

Change Task

_images/django_rq_async.png
Asynchronous Processing

Request

Response.

Instruction

Asynchronous
Processor

Instruction s

il

Instruction

Instructions are Processed

Instructions Sent Here

_images/dtm-show-2.gif
ISUALIZZA L SITO / MODIF

Amministrazione sito

Azioni recenti

Gruppi +Aggiungi # Modifica
Utenti +Aggiungi # Modifica Le mie azioni

Testlive logging (started)
ook

Commands # Modifica ook
p— P ’ :.:llivelngging (idle)
Tosks +Agolungi # Modifica # Testlive logging (cle)
N J— +Agghngt 2 Modca =

Testlive logging (die)
Task

Testlive logging (idle)
Tk

Testlive logging (idle)
ook

Testlive logging (dle)
Tk

Testlive logging (spooled)
Tk

Testlive logging (spooled)
Tonk

_images/admin_gui_8.png
Spooler id:

Status: IDLE

Last datetime: Dec. 30,2019,12:46 pm.
Last result: oK

Next: B

Errors: 1

Warnings: 0

_images/admin_gui_9.png
REPORTS

INVOCATION RESULT

INVOCATION DATETIME

Report Test live logging 2020-06-30 10:12:55.683097+00:00 4* Modifica

Report Test live logging errors 2020-06-30 10:11:26.545363+00:00 4* Modifica

ERRORS

Report Test live logging errors 2020-06-30 10:08:56.484610+00:00 ,* Modifica

ERRORS

Report Test live logging errors 2020-06-30 09:47:08.900132+00:00 ,* Modifica

ERRORS

Martedi 30 Giugno 2020 10:12

Martedi 30 Giugno 2020 10:11

Martedi 30 Giugno 2020 10:08

Martedi 30 Giugno 2020 09:47

LOG TAIL

Show the log_messages

1 lines hidden ...

[30/Jun/2020 10:12:19]
[30/Jun/2020 10:12:19]
[30/Jun/2020 10:12:19]
[30/Jun/2020 10:12:19]
[30/Jun/2020 10:12:19]
[30/Jun/2020 10:12:19]
[30/Jun/2020 10:12:19]
[30/Jun/2020 10:12:19]

Finished: test_livelogging_command --verbosity=3,--1imit=500,--trace-steps=20 @ 2020-06-30 10:12:19.686669

Show the log messages

1 lines hidden ...

[30/1un/2020 10:09:47]
[30/1un/2020 10:09:47]
[30/1un/2020 10:09:47]
[30/Jun/2020 10:09:47]
[30/1un/2020 10:09:47]
[30/1un/2020 10:09:47]
[30/1un/2020 10:09:47]
[30/Jun/2020 10:09:47]

Finished: test_livelogging_command --verbosity=3,--1imit=500,--trace-steps=20 @ 2020-06-30 10:09:47.770481

Show the log messages

1 lines hidden ...

DEBUG A debug message

was generated (496)

ERROR An error was generated rendomly

DEBUG A debug message
DEBUG A debug message
DEBUG A debug message
DEBUG A debug message

was generated (497)
was generated (498)
was generated (499)
was generated (500)

ERROR An error was generated rendomly

INFO 500/500

WARNING A warning was
DEBUG A debug message
DEBUG A debug message
WARNING A warning was
DEBUG A debug message
DEBUG A debug message
DEBUG A debug message
INFO 500/500

generated randomly
was generated (496)
was generated (497)
generated randomly
was generated (498)
was generated (499)
was generated (500)

CANCELLARE?

0

O

O

O

_images/periodic.png
Arguments: foo, bar, —verbosity=2

Category: +

Scheduling. Date: | 20191230 Today ()
Time: | 000700 | Now| @

Repetition period: MINUTE ¢

Repetition rate: 2

Note Atest of some kind.

_images/scheduling.png
Arguments: foo, bar, —verbosity=2
Category: +
Scheduling: Date: | 20191230 | Today ()

Time: | 000700 | Now| @

Repetition period

Repetition rate:

Note Atest of some kind.

_images/admin_gui_10.png
Test live logging

ALL(626)| DEBUG (500) = INFO(25) | WARNINGS (73) = ERRORS (26) @ ¥ Command: test_livelogging_command
Arguments:
--verbosity=3

[30/Jun/2020 10:13:47] DEBUG A debug message was generated (452)
(30/3un/2020 10:13:48] DEBUG A debug message was generated (453)
(30/3un/2020 10:13:48] DEBUG A debug message was generated (454)
(30/3un/2020 10:13:48] DEBUG A debug message was generated (455) --trace-step:
(30/3un/2020 10:13:48] DEBUG A debug message was generated (456) Launched at: 2020-06-30 10:12:55
[30/Jun/2020 10:13:48] WARNING A warning was generated randomly Current status: idle
(30/3un/2020 10:13:48] DEBUG A debug message was generated (457)
(30/Jun/2020 10:13:48] DEBUG A debug message was generated (458)
(30/3un/2020 10:13:48] DEBUG A debug message was generated (459)
(30/3un/2020 10:13:48] WARNING A warning was generated randomly
(30/3un/2020 10:13:48] DEBUG A debug message was generated (460)
(30/3un/2020 10:13:48] INFO 460/500

(30/3un/2020 10:13:48] DEBUG A debug message was generated (461)
(30/3un/2020 10:13:48] DEBUG A debug message was generated (462)
(30/3un/2020 10:13:49] DEBUG A debug message was generated (463)
(30/3un/2020 10:13:49] DEBUG A debug message was generated (464)
(30/3un/2020 10:13:49] DEBUG A debug message was generated (465)
(30/3un/2020 10:13:49] WARNING A warning was generated randomly
(30/3un/2020 10:13:49] DEBUG A debug message was generated (466)
(30/3un/2020 10:13:49] DEBUG A debug message was generated (467)
(30/3un/2020 10:13:49] DEBUG A debug message was generated (468)
(30/3un/2020 10:13:49] DEBUG A debug message was generated (469)
(30/3un/2020 10:13:49] ERROR An error was generated rendomly
(30/3un/2020 10:13:49] WARNING A warning was generated randomly
(30/3un/2020 10:13:49] DEBUG A debug message was generated (470)
(30/Jun/2020 10:13:49] ERROR An error was generated rendomly
(30/3un/2020 10:13:49] DEBUG A debug message was generated (471)
(30/3un/2020 10:13:50] DEBUG A debug message was generated (472)
(30/3un/2020 10:13:50] DEBUG A debug message was generated (473)
(30/3un/2020 10:13:50] DEBUG A debug message was generated (474)
(30/3un/2020 10:13:50] DEBUG A debug message was generated (475)
(30/3un/2020 10:13:50] DEBUG A debug message was generated (476)
(30/3un/2020 10:13:50] DEBUG A debug message was generated (477)
(30/3un/2020 10:13:50] DEBUG A debug message was generated (478)
(30/3un/2020 10:13:50] DEBUG A debug message was generated (479)
(30/3un/2020 10:13:50] DEBUG A debug message was generated (480)
(30/3un/2020 10:13:50] INFO 480/500

(30/3un/2020 10:13:51] DEBUG A debug message was generated (481)
(30/3un/2020 10:13:51] WARNING A warning was generated randomly
(30/3un/2020 10:13:51] DEBUG A debug message was generated (482)
(30/3un/2020 10:13:51] DEBUG A debug message was generated (483)
(30/3un/2020 10:13:51] DEBUG A debug message was generated (484)
(30/3un/2020 10:13:51] DEBUG A debug message was generated (485)
(30/3un/2020 10:13:51] WARNING A warning was generated randomly
(30/3un/2020 10:13:51] DEBUG A debug message was generated (486)
(30/3un/2020 10:13:52] DEBUG A debug message was generated (487)
(30/3un/2020 10:13:52] DEBUG A debug message was generated (488)
(30/3un/2020 10:13:52] DEBUG A debug message was generated (489)
(30/3un/2020 10:13:52] DEBUG A debug message was generated (490)
(30/3un/2020 10:13:52] DEBUG A debug message was generated (491)
(30/3un/2020 10:13:52] WARNING A warning was generated randomly
(30/3un/2020 10:13:52] DEBUG A debug message was generated (492)
(30/3un/2020 10:13:52] DEBUG A debug message was generated (493)
(30/3un/2020 10:13:53] DEBUG A debug message was generated (494)
(30/3un/2020 10:13:53] DEBUG A debug message was generated (495)
(30/3un/2020 10:13:53] WARNING A warning was generated randomly
(30/3un/2020 10:13:53] DEBUG A debug message was generated (496)
(30/3un/2020 10:13:53] ERROR An error was generated rendomly
(30/3un/2020 10:13:53] DEBUG A debug message was generated (497)
(30/3un/2020 10:13:53] DEBUG A debug message was generated (498)
(30/3un/2020 10:13:53] DEBUG A debug message was generated (499)
(30/3un/2020 10:13:53] DEBUG A debug message was generated (500)
(30/3un/2020 10:13:53] INFO 500/500

Finished: test_livelogging_command --verbosity=3,--1imit=500, --trace-steps=20 @ 2020-06-30 10:13:53.869857

_images/admin_gui_2.png
0 @ localhost:

Home > Task manager » Commands

Select Command to change

FILTER

Action: | —— 4)[6o | 00f3selected
B By active
) APPNAME 1 e NamE 2. AcTE

Al
) taskmanager collectcommands Yes
[taskmanager test_command o
) taskmanager test_logging_command

3 Commands -
save

_images/admin_gui_1.png
0 @ localhost:

Site administration

.
Recent actions

Groups +Add & Change
Users +Add & Change My actions
2 Atest (idle)
Task
2 Atest (idle)
Commands # Change Task
Reports # Change # Atest (de)
Tasks +Add & Change # Atest (spooled)
Task
Tasks categories +Add & Change 2 Atest (spooled)
Task
2 Atest (idle)
Task
2 Atest (idle)

Task

Atest (scheduled)

Task

Atest (spooled)

Task

& Atest (ide)

Task

_images/admin_gui_3.png
0 @ localhost:

Home Task manager » Commands » taskmanager. test_command

Change Command
Active
App name: taskmanager
Name: test_command

usage: test_comand [-h] [-a] [-b] [--arg3 [ARG3]] [--version] [-v {0,1,2,3}]
[--settings SETTINGS] [--pythonpath PYTHONPATH]
[--traceback] [--no-color] [--force-color]
[--skip-checks]
argl argz

Command for test purpouse

positional arguments:

argl Test argl
argz Test arg2
optional arguments:
-h, --help show this help message and exit
-a Test -a
b Test -b
--arg3 [ARG3] Test arg3
~-version show progran’s version number and exit

v {0,1,2,3}, --verbosity {9,1,2,3}
Verbosity level; @=mininal output, l=normal output,
2=verbose output, 3=very verbose output

--settings SETTINGS The Python path to a settings module, e.g.
“myproject. settings.main’. If this isn't provided, the
DIANGO_SETTINGS_MODULE environment variable will be
used.

~-pythonpath PYTHONPATH
A directory to add to the Python path, e.g.
“/home/djangoprojects/myproject” .

~-traceback Raise on CommandError exceptions
--no-color Don't colorize the comand output.
-~force-color Force colorization of the command output.
--skip-checks Skip system checks.

=

_images/stop.png
O @ localhost: Y @

ME, ADMIN. VIEW SITE / CHANGE PASSWORD

Home > Task manager » Tasks » A test (spooled)

Change Task

[(sveserer | swesmscomimmsiy | s

Name: Atest
Command: taskmanager.test_command 4 .
Arguments: foo, bar, -a, b, ~verbosity=2

4
Separate arguments with a comma */and parameters with a blank space " eg: - ~secondarg param1 param2, ~tirdarg=pippo, ~thirdarg

Category: -4 o+

B

nav.xhtml

 Table of Contents

 		
 Welcome to Django uWSGI taskmanager’s documentation!

 		
 Get started

 		
 The demo tutorial

 		
 Installation

 		
 Usage

 		
 How-to guides

 		
 How to manage tasks in the django admin site

 		
 Commands

 		
 Tasks

 		
 Task structure

 		
 Defining a task

 		
 Task categories

 		
 Scheduling a task

 		
 Reading the task’s last execution status

 		
 Reading the task’s reports

 		
 How to install django-uwsgi-taskmanager in an existing project

 		
 How to add django-uwsgi-taskmanager to a dockerized stack

 		
 How to enable notifications

 		
 Developing a custom handler

 		
 How to contribute to the project

 		
 Documentation

 		
 Development

 		
 How to debug tasks

 		
 Reference

 		
 taskmanager.models

 		
 taskmanager.management.base

 		
 taskmanager.logging

 		
 taskmanager.tasks

 		
 taskmanager.tasks.exec_command_task()

 		
 Discussions

 		
 Pre-requisites

_static/file.png

_static/minus.png

_static/images/admin_gui_1.png
0 @ localhost:

Site administration

.
Recent actions

Groups +Add & Change
Users +Add & Change My actions
2 Atest (idle)
Task
2 Atest (idle)
Commands # Change Task
Reports # Change # Atest (de)
Tasks +Add & Change # Atest (spooled)
Task
Tasks categories +Add & Change 2 Atest (spooled)
Task
2 Atest (idle)
Task
2 Atest (idle)

Task

Atest (scheduled)

Task

Atest (spooled)

Task

& Atest (ide)

Task

_static/images/admin_gui_10.png
Test live logging

ALL(626)| DEBUG (500) = INFO(25) | WARNINGS (73) = ERRORS (26) @ ¥ Command: test_livelogging_command
Arguments:
--verbosity=3

[30/Jun/2020 10:13:47] DEBUG A debug message was generated (452)
(30/3un/2020 10:13:48] DEBUG A debug message was generated (453)
(30/3un/2020 10:13:48] DEBUG A debug message was generated (454)
(30/3un/2020 10:13:48] DEBUG A debug message was generated (455) --trace-step:
(30/3un/2020 10:13:48] DEBUG A debug message was generated (456) Launched at: 2020-06-30 10:12:55
[30/Jun/2020 10:13:48] WARNING A warning was generated randomly Current status: idle
(30/3un/2020 10:13:48] DEBUG A debug message was generated (457)
(30/Jun/2020 10:13:48] DEBUG A debug message was generated (458)
(30/3un/2020 10:13:48] DEBUG A debug message was generated (459)
(30/3un/2020 10:13:48] WARNING A warning was generated randomly
(30/3un/2020 10:13:48] DEBUG A debug message was generated (460)
(30/3un/2020 10:13:48] INFO 460/500

(30/3un/2020 10:13:48] DEBUG A debug message was generated (461)
(30/3un/2020 10:13:48] DEBUG A debug message was generated (462)
(30/3un/2020 10:13:49] DEBUG A debug message was generated (463)
(30/3un/2020 10:13:49] DEBUG A debug message was generated (464)
(30/3un/2020 10:13:49] DEBUG A debug message was generated (465)
(30/3un/2020 10:13:49] WARNING A warning was generated randomly
(30/3un/2020 10:13:49] DEBUG A debug message was generated (466)
(30/3un/2020 10:13:49] DEBUG A debug message was generated (467)
(30/3un/2020 10:13:49] DEBUG A debug message was generated (468)
(30/3un/2020 10:13:49] DEBUG A debug message was generated (469)
(30/3un/2020 10:13:49] ERROR An error was generated rendomly
(30/3un/2020 10:13:49] WARNING A warning was generated randomly
(30/3un/2020 10:13:49] DEBUG A debug message was generated (470)
(30/Jun/2020 10:13:49] ERROR An error was generated rendomly
(30/3un/2020 10:13:49] DEBUG A debug message was generated (471)
(30/3un/2020 10:13:50] DEBUG A debug message was generated (472)
(30/3un/2020 10:13:50] DEBUG A debug message was generated (473)
(30/3un/2020 10:13:50] DEBUG A debug message was generated (474)
(30/3un/2020 10:13:50] DEBUG A debug message was generated (475)
(30/3un/2020 10:13:50] DEBUG A debug message was generated (476)
(30/3un/2020 10:13:50] DEBUG A debug message was generated (477)
(30/3un/2020 10:13:50] DEBUG A debug message was generated (478)
(30/3un/2020 10:13:50] DEBUG A debug message was generated (479)
(30/3un/2020 10:13:50] DEBUG A debug message was generated (480)
(30/3un/2020 10:13:50] INFO 480/500

(30/3un/2020 10:13:51] DEBUG A debug message was generated (481)
(30/3un/2020 10:13:51] WARNING A warning was generated randomly
(30/3un/2020 10:13:51] DEBUG A debug message was generated (482)
(30/3un/2020 10:13:51] DEBUG A debug message was generated (483)
(30/3un/2020 10:13:51] DEBUG A debug message was generated (484)
(30/3un/2020 10:13:51] DEBUG A debug message was generated (485)
(30/3un/2020 10:13:51] WARNING A warning was generated randomly
(30/3un/2020 10:13:51] DEBUG A debug message was generated (486)
(30/3un/2020 10:13:52] DEBUG A debug message was generated (487)
(30/3un/2020 10:13:52] DEBUG A debug message was generated (488)
(30/3un/2020 10:13:52] DEBUG A debug message was generated (489)
(30/3un/2020 10:13:52] DEBUG A debug message was generated (490)
(30/3un/2020 10:13:52] DEBUG A debug message was generated (491)
(30/3un/2020 10:13:52] WARNING A warning was generated randomly
(30/3un/2020 10:13:52] DEBUG A debug message was generated (492)
(30/3un/2020 10:13:52] DEBUG A debug message was generated (493)
(30/3un/2020 10:13:53] DEBUG A debug message was generated (494)
(30/3un/2020 10:13:53] DEBUG A debug message was generated (495)
(30/3un/2020 10:13:53] WARNING A warning was generated randomly
(30/3un/2020 10:13:53] DEBUG A debug message was generated (496)
(30/3un/2020 10:13:53] ERROR An error was generated rendomly
(30/3un/2020 10:13:53] DEBUG A debug message was generated (497)
(30/3un/2020 10:13:53] DEBUG A debug message was generated (498)
(30/3un/2020 10:13:53] DEBUG A debug message was generated (499)
(30/3un/2020 10:13:53] DEBUG A debug message was generated (500)
(30/3un/2020 10:13:53] INFO 500/500

Finished: test_livelogging_command --verbosity=3,--1imit=500, --trace-steps=20 @ 2020-06-30 10:13:53.869857

_static/plus.png

_static/images/admin_gui_2.png
0 @ localhost:

Home > Task manager » Commands

Select Command to change

FILTER

Action: | —— 4)[6o | 00f3selected
B By active
) APPNAME 1 e NamE 2. AcTE

Al
) taskmanager collectcommands Yes
[taskmanager test_command o
) taskmanager test_logging_command

3 Commands -
save

_static/images/admin_gui_3.png
0 @ localhost:

Home Task manager » Commands » taskmanager. test_command

Change Command
Active
App name: taskmanager
Name: test_command

usage: test_comand [-h] [-a] [-b] [--arg3 [ARG3]] [--version] [-v {0,1,2,3}]
[--settings SETTINGS] [--pythonpath PYTHONPATH]
[--traceback] [--no-color] [--force-color]
[--skip-checks]
argl argz

Command for test purpouse

positional arguments:

argl Test argl
argz Test arg2
optional arguments:
-h, --help show this help message and exit
-a Test -a
b Test -b
--arg3 [ARG3] Test arg3
~-version show progran’s version number and exit

v {0,1,2,3}, --verbosity {9,1,2,3}
Verbosity level; @=mininal output, l=normal output,
2=verbose output, 3=very verbose output

--settings SETTINGS The Python path to a settings module, e.g.
“myproject. settings.main’. If this isn't provided, the
DIANGO_SETTINGS_MODULE environment variable will be
used.

~-pythonpath PYTHONPATH
A directory to add to the Python path, e.g.
“/home/djangoprojects/myproject” .

~-traceback Raise on CommandError exceptions
--no-color Don't colorize the comand output.
-~force-color Force colorization of the command output.
--skip-checks Skip system checks.

=

_static/images/admin_gui_4.png
ag

Scegli Task da modificare

all Cerca
Azione: | —— [J(vai | 0di64 selezionati
) UTMORISULTATO NOME WvocazionE
O M2WARNINGS Amministratori import_memberships_from minint_current
comunali comenti __context=comuni --verbosity=3 --loc-desc-MARMENTINO%
(singolo comune) __memberships-update-strategy=keep_old --clear-cache
N 73 Import gruppi import_gruppi_parlamento_meta
parlamentari (18) 18 --clear-loader-cache —-verbosity=3
lersl
o Bk Aree ISTAT import._ from_istat
--verbosity:
N 73 Import camera import_governo_parlamento_memberships
--latest --clear-parser-cache --context=camera --verbosity=2
--clear-loader-cache
o Bk Import senato import_governo_parlamento_memberships
--latest --clear-parser-cache --context=senato --verbosity=2
--clear-loader-cache
N 73 Generazione delle script_generate_appointments_:
relazioni dinomina --verbosity=2
) W 2ErRORS Correct comuni with script_correct_comuni.

o area or children

--verbosity=2

sTaTus

IDLE

SPOOLED

SPOOLED

SPOOLED

SPOOLED

SPOOLED

SPOOLED

AGGIUNGI TASK +

FILTRA

ULTIMO LANCIO. ~ PROSSIMO LANCIO RIPETIZIONE
Venerdi 31 Luglio 2020 13:17 - -

Giovedi 09 Luglio 2020 08:00 Venerdi 10 Luglio 2020 08:00 1 day
Giovedi 09 Luglio 2020 08:00 Venerdi 10 Luglio 2020 08:00 1 day
Giovedi 09 Luglio 2020 06:00 Venerdi 10 Luglio 2020 06:00 1 day
Giovedi 09 Luglio 2020 06:00 Venerdi 10 Luglio 2020 06:00 1 day
Giovedi 09 Luglio 2020 06:00 Giovedi 09 Luglio 2020 12:00 6 hour
Giovedi 09 Luglio 2020 06:00 Venerdi 10 Luglio 2020 06:00 1 day

_static/images/admin_gui_7.png
Scheduiing: Date: | o)
Tme: | @

Note: You are 1 hour shead of server time.

N

_static/images/admin_gui_8.png
Spooler id:

Status: IDLE

Last datetime: Dec. 30,2019,12:46 pm.
Last result: oK

Next: B

Errors: 1

Warnings: 0

_static/images/admin_gui_5.png
Django administration ME, ADMIN. VIEW SITE / CHANGE PASSWO

Home Task manager » Tasks » A test (dle)

Change Task

_static/images/admin_gui_6.png
Defi

Name: Atest
Command: taskmanager.test_command 4 .
Arguments: foo, bar, -a, b, ~verbosity=2

4
. parameters with a blank space . eg:, secondarg param1 param, ~thirdarg=pippo, thirdarg

‘Separate arguments with a comma

Category: Provat o 4 %
Ghoose a category for ths task
Note: Atest of some kind.

Anote on how ths task is used.

_static/images/dtm-show-2.gif
ISUALIZZA L SITO / MODIF

Amministrazione sito

Azioni recenti

Gruppi +Aggiungi # Modifica
Utenti +Aggiungi # Modifica Le mie azioni

Testlive logging (started)
ook

Commands # Modifica ook
p— P ’ :.:llivelngging (idle)
Tosks +Agolungi # Modifica # Testlive logging (cle)
N J— +Agghngt 2 Modca =

Testlive logging (die)
Task

Testlive logging (idle)
Tk

Testlive logging (idle)
ook

Testlive logging (dle)
Tk

Testlive logging (spooled)
Tk

Testlive logging (spooled)
Tonk

_static/images/periodic.png
Arguments: foo, bar, —verbosity=2

Category: +

Scheduling. Date: | 20191230 Today ()
Time: | 000700 | Now| @

Repetition period: MINUTE ¢

Repetition rate: 2

Note Atest of some kind.

_static/images/admin_gui_9.png
REPORTS

INVOCATION RESULT

INVOCATION DATETIME

Report Test live logging 2020-06-30 10:12:55.683097+00:00 4* Modifica

Report Test live logging errors 2020-06-30 10:11:26.545363+00:00 4* Modifica

ERRORS

Report Test live logging errors 2020-06-30 10:08:56.484610+00:00 ,* Modifica

ERRORS

Report Test live logging errors 2020-06-30 09:47:08.900132+00:00 ,* Modifica

ERRORS

Martedi 30 Giugno 2020 10:12

Martedi 30 Giugno 2020 10:11

Martedi 30 Giugno 2020 10:08

Martedi 30 Giugno 2020 09:47

LOG TAIL

Show the log_messages

1 lines hidden ...

[30/Jun/2020 10:12:19]
[30/Jun/2020 10:12:19]
[30/Jun/2020 10:12:19]
[30/Jun/2020 10:12:19]
[30/Jun/2020 10:12:19]
[30/Jun/2020 10:12:19]
[30/Jun/2020 10:12:19]
[30/Jun/2020 10:12:19]

Finished: test_livelogging_command --verbosity=3,--1imit=500,--trace-steps=20 @ 2020-06-30 10:12:19.686669

Show the log messages

1 lines hidden ...

[30/1un/2020 10:09:47]
[30/1un/2020 10:09:47]
[30/1un/2020 10:09:47]
[30/Jun/2020 10:09:47]
[30/1un